Manufacturing chimeric antigen receptor (CAR) T cell therapies is complex, with limited understanding of how medium composition impacts T cell phenotypes. CRISPR-Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant () gene resulting in -CAR T cells with an enriched stem cell memory T cell population, a process that could be further optimized through modifications to the medium composition. In this study we generated anti-GD2 -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine-low medium and then expanded in glucose/glutamine-high medium.
View Article and Find Full Text PDFManufacturing Chimeric Antigen Receptor (CAR) T cell therapies is complex, with limited understanding of how media composition impact T-cell phenotypes. CRISPR/Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant ( ) gene resulting in -CAR T cells with an enriched stem cell memory T-cell population, a process that could be further optimized through modifications to the media composition. In this study we generated anti-GD2 -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine low media and then expanded in glucose/glutamine high media.
View Article and Find Full Text PDFDocetaxel (DTX) chemotherapy is commonly used in the treatment of patients with advanced prostate cancer demonstrating modest improvements in survival. As these patients are often elderly and the chemotherapy treatment is not targeted, it is often poorly tolerated. More targeted approaches that increase therapeutic efficacy yet reduce the amount of toxic chemotherapy administered are needed.
View Article and Find Full Text PDF