Publications by authors named "A Mazzinghi"

Some paintings may have hidden depictions beneath the visible surface, which can provide valuable insights into the artist's creative process and the genesis of the artwork. Studies have shown that these covered paintings can be revealed through image-based techniques and integrated data processing. This study analyzes an oil painting by Beceri from the mid-16th century depicting the Holy Family, owned by the Uffizi Galleries.

View Article and Find Full Text PDF

There is a considerable interest in developing new analytical tools to fight the illicit trafficking of heritage goods and particularly of easel paintings, whose high market values attract an ever-increasing volume of criminal activities. The objective is to combat the illicit traffic of smuggled or forged paintworks and to prevent the acquisition of fakes or looted artefacts in public collections. Authentication can be addressed using various investigation techniques, such as absolute dating, materials characterization, alteration phenomena, etc.

View Article and Find Full Text PDF

The LABEC laboratory, the INFN ion beam laboratory of nuclear techniques for environment and cultural heritage, located in the Scientific and Technological Campus of the University of Florence in Sesto Fiorentino, started its operational activities in 2004, after INFN decided in 2001 to provide our applied nuclear physics group with a large laboratory dedicated to applications of accelerator-related analytical techniques, based on a new 3 MV Tandetron accelerator. The new accelerator greatly improved the performance of existing Ion Beam Analysis (IBA) applications (for which we were using since the 1980s an old single-ended Van de Graaff accelerator) and in addition allowed to start a novel activity of Accelerator Mass Spectrometry (AMS), in particular for C dating. Switching between IBA and AMS operation became very easy and fast, which allowed us high flexibility in programming the activities, mainly focused on studies of cultural heritage and atmospheric aerosol composition, but including also applications to biology, geology, material science and forensics, ion implantation, tests of radiation damage to components, detector performance tests and low-energy nuclear physics.

View Article and Find Full Text PDF

Development of non-destructive or micro-invasive scientific diagnostic techniques gained an outmost importance in the field of Cultural Heritage, contributing to assess authenticity, provenience and age of the objects, as well as supplying additional information to art conservators, to accomplish suitable restoring and preservative procedures. However, each diagnostic technique has its own advantages and limitations, thus in many cases the optimal sample characterization requires a synergy between different analytical approaches. In this context, Particle Induced X-ray Emission (PIXE) and high energy (HE) PIXE with 3 MeV and 17 MeV proton beams respectively, Elastic Backscattering Spectrometry (EBS) and micro X-Ray Fluorescence (μ-XRF) techniques were applied in a multi-analytical approach to characterize the composition of the artifacts.

View Article and Find Full Text PDF

This paper shows that it is possible to exploit the modulated metasurface concept to control the unwanted coupling between antennas that are installed on the same satellite. The metasurface is combined with a Multi-Layer thermal Insulation blanket to reduce its specular reflection by spreading the energy incoherently in the surrounding space. In the design, sub-wavelength radiating elements printed on thin substrate have been used to make the metasurface response azimuthally independent, and to keep the weight of blanket down.

View Article and Find Full Text PDF