Background: We recently found that peritubular cells of the human testis are a dominant site of expression of the glucocorticoid receptor (GR; encoded by NR3C1). Activation of GR by dexamethasone (Dex) strongly influences the phenotype of cultured human testicular peritubular cells (HTPCs), causing massive changes of their proteome and secretome. As glucocorticoids (GC) are also known to set the internal clock of peripheral organs by regulating clock genes, we tested such an influence of Dex in HTPCs.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2024
Biogenic amines are signaling molecules with multiple roles in the central nervous system and in peripheral organs, including the gonads. A series of studies indicated that these molecules, their biosynthetic enzymes and their receptors are present in the testis and that they are involved in the regulation of male reproductive physiology and/or pathology. This mini-review aims to summarize the current knowledge in this field and to pinpoint existing research gaps.
View Article and Find Full Text PDFAnti-Müllerian hormone (AMH) is a key paracrine/autocrine factor regulating folliculogenesis in the postnatal ovary. As antral follicles mature to the preovulatory stage, AMH production tends to be limited to cumulus cells. Therefore, the present study investigated the role of cumulus cell-derived AMH in supporting maturation and competence of the enclosed oocyte.
View Article and Find Full Text PDFHuman testicular peritubular cells (HTPCs) are smooth muscle cells, which in the testis form a small compartment surrounding the seminiferous tubules. Contractions of HTPCs are responsible for sperm transport, HTPCs contribute to spermatogenesis, have immunological roles and are a site of glucocorticoid receptor expression. Importantly, HTPCs maintain their characteristics in vitro, and thus can serve as an experimental window into the male gonad.
View Article and Find Full Text PDFThe alpha7 nicotinic acetylcholine receptor (α7 nAChR; CHRNA7) is expressed in the nervous system and in non-neuronal tissues. Within the central nervous system, it is involved in various cognitive and sensory processes such as learning, attention, and memory. It is also expressed in the cerebellum, where its roles are; however, not as well understood as in the other brain regions.
View Article and Find Full Text PDF