Publications by authors named "A Maute"

Article Synopsis
  • The NASA Ionospheric Connection Explorer (ICON) completed its two-year mission, successfully achieving and exceeding its scientific goals.
  • Launched in October 2019, ICON measures plasma density in Earth's space environment, providing valuable insights into the ionosphere-thermosphere system.
  • During its mission, ICON identified significant effects in the ionosphere influenced by atmospheric conditions and observed shifts in these influences as solar activity changed over time.
View Article and Find Full Text PDF
Article Synopsis
  • * These variations are linked to "thermospheric weather," where upper-atmosphere winds react to waves from lower regions, affecting ionospheric density through wind-driven electromotive forces.
  • * New findings from NASA's Ionospheric Connection Explorer provide direct evidence of the wind dynamo effect in space, highlighting a strong connection between plasma motion and thermospheric winds, which is crucial for improving predictions of the plasma environment.
View Article and Find Full Text PDF

The technique of spherical elementary current systems (SECS) is a powerful way to determine ionospheric and field-aligned currents (FAC) from magnetic field measurements made by low-Earth-orbiting satellites, possibly in combination with magnetometer arrays on the ground. The SECS method consists of two sets of basis functions for the ionospheric currents: divergence-free (DF) and curl-free (CF) components, which produce poloidal and toroidal magnetic fields, respectively. The original CF SECS are only applicable at high latitudes, as they build on the assumption that the FAC flow radially into or out of the ionosphere.

View Article and Find Full Text PDF

The strength and structure of the Earth's magnetic field is gradually changing. During the next 50 years the dipole moment is predicted to decrease by 3.5%, with the South Atlantic Anomaly expanding, deepening, and continuing to move westward, while the magnetic dip poles move northwestward.

View Article and Find Full Text PDF

The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3 ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community.

View Article and Find Full Text PDF