The technique of spherical elementary current systems (SECS) is a powerful way to determine ionospheric and field-aligned currents (FAC) from magnetic field measurements made by low-Earth-orbiting satellites, possibly in combination with magnetometer arrays on the ground. The SECS method consists of two sets of basis functions for the ionospheric currents: divergence-free (DF) and curl-free (CF) components, which produce poloidal and toroidal magnetic fields, respectively. The original CF SECS are only applicable at high latitudes, as they build on the assumption that the FAC flow radially into or out of the ionosphere.
View Article and Find Full Text PDFJ Geophys Res Space Phys
March 2020
The strength and structure of the Earth's magnetic field is gradually changing. During the next 50 years the dipole moment is predicted to decrease by 3.5%, with the South Atlantic Anomaly expanding, deepening, and continuing to move westward, while the magnetic dip poles move northwestward.
View Article and Find Full Text PDFThe NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3 ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community.
View Article and Find Full Text PDF