Despite intense research towards the understanding of abiotic stress adaptation in tomato, the physiological adjustments and transcriptome modulation induced by combined salt and low nitrate (low N) conditions remain largely unknown. Here, three traditional tomato genotypes were grown under long-term single and combined stresses throughout a complete growth cycle. Physiological, molecular, and growth measurements showed extensive morphophysiological modifications under combined stress compared to the control, and single stress conditions, resulting in the highest penalty in yield and fruit size.
View Article and Find Full Text PDFPlant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K.
View Article and Find Full Text PDFIdentification of novel genotypes with enhanced nitrogen use efficiency (NUE) is a key challenge for a sustainable tomato production. In this respect, the performance of a panel of thirty tomato accessions were evaluated under high (HN; 5 mM N) and low (LN; 0.5 mM N) nitrogen irrigation solutions.
View Article and Find Full Text PDFHuman activities in urban areas disturb the natural landscape upon which they develop, disrupting pedogenic processes and ultimately limiting the ecosystem services urban soils provide. To better understand the impacts on and resiliency of soils in response to urban development, it is essential to understand the processes by which and degree to which soil physical and chemical properties are altered in urban systems. Here, we apply the source-tracing capabilities of Sr isotopes (Sr/Sr) to understand the impacts of urban processes on the composition of soils in eight watersheds in Austin, Texas.
View Article and Find Full Text PDFBackground: Understanding the complex regulatory network underlying plant nitrogen (N) responses associated with high Nitrogen Use Efficiency (NUE) is one of the main challenges for sustainable cropping systems. Nitrate (NO ), acting as both an N source and a signal molecule, provokes very fast transcriptome reprogramming, allowing plants to adapt to its availability. These changes are genotype- and tissue-specific; thus, the comparison between contrasting genotypes is crucial to uncovering high NUE mechanisms.
View Article and Find Full Text PDF