Publications by authors named "A Matzarakis"

Introduction: Climate change is the greatest threat to human health in the 21 century. Climate change poses a significant threat to human health in Germany, with increasing heatwaves causing high mortality rates. In recent years, the German medical profession has become increasingly concerned with the consequences of climate change, particularly extreme temperatures and heat, for human health.

View Article and Find Full Text PDF

Traditional heat health warning systems focus on severe and extreme heat events at the district or regional level, often overlooking localized risk and protective factors such as healthcare access and urban green spaces. This approach considers less the varying impacts of heat within cities, including the phenomenon of Urban Heat Islands (UHIs) and the diverse needs of different populations. To address these shortcomings, a need for the development of an Urban Heat Health Warning and Information System (UHHWIS) that operates within the framework of Heat Health Action Plans is needed.

View Article and Find Full Text PDF

Human bioclimatic comfort (HBC) is an important subject of climatology in the field of physical geography. Human bioclimatic comfort (HBC) is the feeling of satisfied and comfortable within the ambient atmospheric thermal environment. Earth climate system has been exposed to changes from the beginning, but since 19 century human - induced factors have contributed to these changes.

View Article and Find Full Text PDF

Acute type A aortic dissection (ATAAD) is a dramatic emergency exhibiting a mortality of 50% within the first 48 hours if not operated. This study found an absolute value of cosine-like seasonal variation pattern for Germany with significantly fewer ATAAD events (Wilcoxon test) for the warm months of June, July, and August from 2005 to 2015. Many studies suspect a connection between ATAAD events and weather conditions.

View Article and Find Full Text PDF

Existing assessments of the thermal-related impact of the environment on humans are often limited by the use of data that are not representative of the population exposure and/or not consider a human centred approach. Here, we combine high resolution regional retrospective analysis (reanalysis), population data and human energy balance modelling, in order to produce a human thermal bioclimate dataset capable of addressing the above limitations. The dataset consists of hourly, population-weighted values of an advanced human-biometeorological index, namely the modified physiologically equivalent temperature (mPET), at fine-scale administrative level and for 10 different population groups.

View Article and Find Full Text PDF