Purpose: We aimed to characterize the RYGB-induced changes in the dynamics of brain glucose uptake. We addressed heterogeneity between brain regions during experimental normo- and hypoglycemia and explored associations with anthropometric and metabolic outcomes of RYGB.
Methods: Analyses of regional brain glucose uptake were performed on 9 individuals with obesity and no diabetes, investigated with combined brain F-FDG-PET and fMRI during hyperinsulinemic normo- and hypoglycemic clamp, one month before and four months after RYGB.
Objective: The objective was to study metabolic characteristics and transcriptome of renal sinus adipose tissue (RSAT) located around renal arteries and veins.
Methods: Adipose tissue biopsies from RSAT, omental (OAT), and subcutaneous (SAT) depots were obtained from healthy kidney donors (20 female, 20 male). Adipocyte glucose uptake rate and cell size were measured, and gene expression analyses using transcriptomics were performed.
The global prevalence of Type 2 Diabetes (T2D) poses significant public health challenges due to its associated severe complications. Insulin resistance is central to T2D pathophysiology, particularly affecting adipose tissue function. This cross-sectional observational study investigates metabolic alterations in subcutaneous adipose tissue (SAT) associated with T2D to identify potential therapeutic targets.
View Article and Find Full Text PDFThe redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR).
View Article and Find Full Text PDF