Publications by authors named "A Matala"

Temperature is a master environmental factor that limits the geographical distribution of species, especially in ectotherms. To address challenges in biodiversity conservation under ongoing climate change, it is essential to characterize relevant functional limitations and adaptive genomic content at population and species levels. Here, we present evidence for adaptive divergence in cardiac function and genomic regions in redband trout () populations from desert and montane streams.

View Article and Find Full Text PDF

Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation.

View Article and Find Full Text PDF

Organisms typically show evidence of adaptation to features within their local environment. However, many species undergo long-distance dispersal or migration across larger geographic regions that consist of highly heterogeneous habitats. Therefore, selection may influence adaptive genetic variation associated with landscape features at residing sites and along migration routes in migratory species.

View Article and Find Full Text PDF

The species is characterized by a complex life history that presents a significant challenge for population monitoring and conservation management. Many factors contribute to genetic variation in populations, including sympatry among migratory phenotypes, habitat heterogeneity, hatchery introgression, and immigration (stray) rates. The relative influences of these and other factors are contingent on characteristics of the local environment.

View Article and Find Full Text PDF

Invasive species have become widespread in aquatic environments throughout the world, yet there are few studies that have examined genomic variation of multiple introduced species in newly colonized environments. In this study, we contrast genomic variation in two salmonid species (anadromous Chinook Salmon, , 11,579 SNPs and resident Brook Charr , 13,522 SNPs) with differing invasion success after introduction to new environments in South America relative to populations from their native range in North America. Estimates of genetic diversity were not significantly different between introduced and source populations for either species, indicative of propagule pressure that has been shown to maintain diversity in founding populations relative to their native range.

View Article and Find Full Text PDF