Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach.
View Article and Find Full Text PDFMotivation: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface.
Results: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration.
The ability of reactive oxygen species (ROS) to cause molecular damage has meant that chronic oxidative stress has been mostly studied from the point of view of being a source of toxicity to the cell. However, the known duality of ROS molecules as both damaging agents and cellular redox signals implies another perspective in the study of sustained oxidative stress. This is a perspective of studying oxidative stress as a constitutive signal within the cell.
View Article and Find Full Text PDFSystems modelling has been successfully used to investigate several key molecular mechanisms of ageing. Modelling frameworks to allow integration of models and methods to enhance confidence in models are now well established. In this article, we discuss these issues and work through the process of building an integrated model for cellular senescence as a single cell and in a simple tissue context.
View Article and Find Full Text PDF