Background: Human adult basal stem/progenitor cells (BSCs) obtained from chronic rhinosinusitis with nasal polyps (CRSwNP) when differentiated in an air-liquid interface (ALI) usually provide a pseudostratified airway epithelium with similar abnormalities than original in vivo phenotype. However, the intrinsic mechanisms regulating this complex process are not well defined and their understanding could offer potential new therapies for CRSwNP (incurable disease).
Methods: We performed a transcriptome-wide analysis during in vitro mucociliary differentiation of human adult BSCs from CRSwNP, compared to those isolated from control nasal mucosa (control-NM), in order to identify which key mRNA and microRNAs are regulating this complex process in pathological and healthy conditions.
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT.
View Article and Find Full Text PDFThe innate immune response is impaired in asthma, with increased epithelial release of C-X-C motif chemokine ligand (CXCL)8, interleukin (IL)-33 and thymic stromal lymphopoietin (TSLP). We hypothesised that dendritic cells might modulate the hyperresponsive epithelium in severe asthma.For this purpose, we investigated epithelial-dendritic crosstalk in normal and diseased conditions, and because ultrafine particulate matter may affect asthmatic airways, we investigated its impact on this crosstalk.
View Article and Find Full Text PDF