Publications by authors named "A Marin Rubio"

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

24-h urinary free cortisol (UFC) measurements are fundamental in the diagnosis and follow-up of Cushinǵs syndrome (CS) and immunoassays (IA) are the most widely used tests for its quantification in clinical laboratory practice. However, their suitability has been questioned mainly due to their limitations concerning analytical specificity. The aim of this research project was to evaluate a novel algorithm for CS diagnosis and follow-up in the clinical laboratory, based on the combination of IA tests with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for UFC quantification.

View Article and Find Full Text PDF

Background: To describe the epidemiology and clinical characteristics of migraine and the status of treatment in Colombia. Additionally, the use of health resources by patients was measured.

Methods: This was a non-interventional, retrospective, descriptive study conducted in one Colombian Health Management Organization (HMO) from 2018 to 2022 with a follow-up period of 5 years.

View Article and Find Full Text PDF

High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.

View Article and Find Full Text PDF

In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).

View Article and Find Full Text PDF