Experimental neuroscience techniques are advancing rapidly, with major recent developments in high-density electrophysiology and targeted electrical stimulation. In combination with these techniques, cortical organoids derived from pluripotent stem cells show great promise as models of brain development and function. Although sensory input is vital to neurodevelopment , few studies have explored the effect of meaningful input to neural cultures over time.
View Article and Find Full Text PDFWith the use of high-density multi-electrode recording devices, electrophysiological signals resulting from action potentials of individual neurons can now be reliably detected on multiple adjacent recording electrodes. Spike sorting assigns these signals to putative neural sources. However, until now, spike sorting can only be performed after completion of the recording, preventing true real time usage of spike sorting algorithms.
View Article and Find Full Text PDFWe aimed to determine how a bout of resistance or aerobic exercise impacts physiological responses and performance during firefighting occupational tasks. Thirty-two non-firefighters completed two baseline assessments and three trials: resistance exercise (RE), aerobic exercise (AE), or a rested control (CON). Trials were followed by an occupational task assessment (OTA; four rounds of 10 deadlifts (38.
View Article and Find Full Text PDFHow seizures begin at the level of microscopic neural circuits remains unknown. High-density CMOS microelectrode arrays provide a new avenue for investigating neuronal network activity, with unprecedented spatial and temporal resolution. We use high-density CMOS-based microelectrode arrays to probe the network activity of human hippocampal brain slices from six patients with mesial temporal lobe epilepsy in the presence of hyperactivity promoting media.
View Article and Find Full Text PDF