Publications by authors named "A Marcello"

Coronaviruses (CoVs) share key genomic elements critical for viral replication, suggesting the feasibility of developing therapeutics with efficacy across different viruses. In a previous work, we demonstrated the antiviral activity of the antipsychotic drug lurasidone against both SARS-CoV-2 and HCoV-OC43. In this study, our investigations on the mechanism of action of lurasidone suggested that the drug exhibits antiviral activity by targeting the papain-like protease (PL-Pro) of both viruses, and the Spike protein of SARS-CoV-2, thereby hampering both the entry and the viral replication.

View Article and Find Full Text PDF

Dengue virus circulation is on the rise globally, with increased epidemic activity in previously unaffected countries, including within Europe. In 2023, global dengue activity peaked, and Italy reported the highest number of dengue cases and local chains of transmission to date. By curating several sources of information, we introduce a novel data repository focused on dengue reporting in Italy.

View Article and Find Full Text PDF

Dengue virus (DENV) causes the most prevalent and rapidly spreading arboviral disease of humans. It enters human cells by receptor-mediated endocytosis. Numerous cell-surface proteins were proposed as DENV entry factors.

View Article and Find Full Text PDF

The genetic analysis of the Dengue virus circulating in Ethiopia's Afar region, in 2023, identified three distinct introductions with spatiotemporal clustering linked to genomes from Asia and Italy. These findings are crucial for enhancing prevention and control strategies, reinforcing the necessity to provide sustainable tools for genomic epidemiology in Africa.

View Article and Find Full Text PDF
Article Synopsis
  • The GA4GH Phenopacket Schema, released in 2022 and approved as a standard by ISO, allows the sharing of clinical and genomic data, including phenotypic descriptions and genetic information, to aid in genomic diagnostics.
  • Phenopacket Store Version 0.1.19 offers a collection of 6668 phenopackets linked to various diseases and genes, making it a crucial resource for testing algorithms and software in genomic research.
  • This collection represents the first extensive case-level, standardized phenotypic information sourced from medical literature, supporting advancements in diagnostic genomics and machine learning applications.
View Article and Find Full Text PDF