The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the magneto-impedance effect have attracted much attention due to their high sensitivity to the stray magnetic field generated by magnetic nanoparticles, their simple fabrication process, and their relatively low cost. To improve the sensitivity of these sensors, a multidisciplinary approach is required to study a wide range of soft magnetic materials as sensing elements and to customize the magnetic properties of nanoparticles.
View Article and Find Full Text PDFPathogens
June 2024
Immunization against COVID-19 is needed in patients with immune-mediated inflammatory diseases (IMIDs). However, data on long-term immunity kinetics remain scarce. This study aimed to compare the humoral and cellular response to COVID-19 in patients with immune-mediated inflammatory diseases (IMIDs) compared to healthy controls.
View Article and Find Full Text PDFSevere acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge.
View Article and Find Full Text PDFTreatment planning in magnetic hyperthermia requires a thorough knowledge of specific loss power of magnetic nanoparticles as a function of size and excitation conditions. Moreover, in biological tissues the magnetic nanoparticles can aggregate into clusters, making the evaluation of their heating performance more challenging because of the magnetostatic dipole-dipole interactions. In this paper, we present a comprehensive modelling analysis of 10-40 nm sized spherical magnetite (FeO) nanoparticles, investigating how their heating properties are influenced by magnetic field parameters (peak amplitude and frequency), and by volume concentration and aggregation state.
View Article and Find Full Text PDFDrug resistance represents one of the great plagues of our time worldwide. This largely limits the treatment of common infections and requires the development of new antibiotics or other alternative approaches. Noteworthy, the indiscriminate use of antibiotics is mostly responsible for the selection of mutations that confer drug resistance to microbes.
View Article and Find Full Text PDF