Aims: Our study evaluates the capacity of direct real-time PCR for detecting Mycobacterium tuberculosis complex (MTBC), with a focus on diagnostic performances and the feasibility of implementing this protocol in an eradication campaign. Specifically, we compare the effectiveness of the direct PCR method to various culture systems used by the Italian National Reference Laboratory over the last decade to detect MTBC.
Methods And Results: Bovine tissue samples were routinely tested and analyzed for bovine tuberculosis (bTB) confirmation using microbiological culture (solid and liquid media), histopathological analysis, and a direct PCR assay targeting IS6110, an insertion sequence specific to the MTBC that is widely used for tuberculosis diagnosis.
In the present work, rGO/MoS/FeO nanocomposite was synthesized and after confirmation of the structure by FTIR, XRD, and FESEM techniques, its performance as nanosorbent was investigated for the removal of fenitrothion pesticide from the aqueous media. The parameters affecting the removal process including agitation time, pH of the reaction medium, adsorbent content, initial analyte concentration as well as desorption parameters were investigated and optimized. Under optimum conditions (pH = 7, adsorbent amount: 30 mg, adsorption and desorption time: 5 min, eluent type and volume: 0.
View Article and Find Full Text PDF