Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.
View Article and Find Full Text PDFNovae are caused by runaway thermonuclear burning in the hydrogen-rich envelopes of accreting white dwarfs, which leads to a rapid expansion of the envelope and the ejection of most of its mass. Theory has predicted the existence of a 'fireball' phase following directly on from the runaway fusion, which should be observable as a short, bright and soft X-ray flash before the nova becomes visible in the optical. Here we report observations of a bright and soft X-ray flash associated with the classical Galactic nova YZ Reticuli 11 h before its 9 mag optical brightening.
View Article and Find Full Text PDFQuasi-periodic eruptions (QPEs) are very-high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes of galactic nuclei. It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data, with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole.
View Article and Find Full Text PDF