Early characterization of the immunostimulatory potential of therapeutic antisense oligonucleotides (ASOs) is crucial. At present, little is known about the toll-like receptor 9 (TLR9)-mediated immunostimulatory potential of third-generation locked nucleic acid (LNA)-modified ASOs. In this study, we have systematically investigated the TLR9-activating potential of LNA-modified oligonucleotides using different mouse and human cell culture systems.
View Article and Find Full Text PDFBackground: Although immune checkpoint inhibitors have been a breakthrough in clinical oncology, these therapies fail to produce durable responses in a significant fraction of patients. This lack of long-term efficacy may be due to a poor pre-existing network linking innate and adaptive immunity. Here, we present an antisense oligonucleotide (ASO)-based strategy that dually targets toll-like receptor 9 (TLR9) and programmed cell death ligand 1 (PD-L1), aiming to overcome resistance to anti-PD-L1 monoclonal therapy.
View Article and Find Full Text PDFIn respect to the heterogeneity among influenza A virus strains and the shortcomings of current vaccination programs, there is a huge interest in the development of alternative vaccines that provide a broader and more long-lasting protection. Gene-based approaches are considered as promising candidates for such flu vaccines. In our study, innate signalling molecules from the RIG-I and the NALP3 pathways were evaluated as genetic adjuvants in intramuscular DNA immunizations.
View Article and Find Full Text PDFThe envelope protein (Env) is the only surface protein of the human immunodeficiency virus (HIV) and as such the exclusive target for protective antibody responses. Experimental evidences from mouse models suggest a modulating property of Env to steer antibody class switching towards the less effective antibody subclass IgG1 accompanied with strong TH2 helper responses. By simple physical linkage we were able to imprint this bias, exemplified by a low IgG2a/IgG1 ratio of antigen-specific antibodies, onto an unrelated antigen, namely the HIV capsid protein p24.
View Article and Find Full Text PDF