Publications by authors named "A M Wyrwicz"

Neonatal and infant exposure to volatile anesthetics has been associated with long-term learning, memory, and behavioral deficits. Although early anesthesia exposure has been linked to a number of underlying structural abnormalities, functional changes associated with these impairments remain poorly understood. To investigate the relationship between functional alteration in neuronal circuits and learning deficiency, resting state functional MRI (rsfMRI) connectivity was examined in adolescent rabbits exposed to general anesthesia as neonates (1 MAC isoflurane for 2 h on postnatal days P8, P11, and P14) and unanesthetized controls before and after training with a trace eyeblink classical conditioning (ECC) paradigm.

View Article and Find Full Text PDF

Millions of children undergo general anesthesia each year, and animal and human studies have indicated that exposure to anesthesia at an early age can impact neuronal development, leading to behavioral and learning impairments that manifest later in childhood and adolescence. Here, we examined the effects of isoflurane, a commonly-used general anesthetic, which was delivered to newborn rabbits. Trace eyeblink classical conditioning was used to assess the impact of neonatal anesthesia exposure on behavioral learning in adolescent subjects, and a variety of MRI techniques including fMRI, MR volumetry, spectroscopy and DTI captured functional, metabolic, and structural changes in key regions of the learning and sensory systems associated with anesthesia-induced learning impairment.

View Article and Find Full Text PDF

There is a critical need for understanding the progression of neuropathology in blast-induced traumatic brain injury using valid animal models to develop diagnostic approaches. In the present study, we used diffusion imaging and magnetic resonance (MR) morphometry to characterize axonal injury in white matter structures of the rat brain following a blast applied via blast tube to one side of the brain. Diffusion tensor imaging was performed on acute and subacute phases of pathology from which fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated for corpus callosum (CC), cingulum bundle, and fimbria.

View Article and Find Full Text PDF

Introduction: Blast-induced mild traumatic brain injury was generated in a mouse model using a shock tube to investigate recovery and axonal injury from single blast.

Methods: A supersonic helium wave hit the head of anesthetized male young adult mice with a reflected pressure of 69 psi for 0.2 ms on Day 1.

View Article and Find Full Text PDF

Objective: Noninvasive methods to identify placental pathologic conditions are being sought in order to recognize these conditions at an earlier stage leading to improved clinical interventions and perinatal outcomes. The objective of this study was to examine fixed tissue slices of placenta by T- and diffusion-weighted magnetic resonance imaging (MRI) and correlate the images with placental pathologic findings defined by routine gross and histologic examination.

Methods: Four formalin-fixed placentas with significant placental pathology (maternal vascular malperfusion, chronic villitis of unknown etiology, and massive perivillous fibrin deposition) and 2 histologically normal placentas were evaluated by high-resolution MRI.

View Article and Find Full Text PDF