Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling.
View Article and Find Full Text PDFPancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) remains a deadly cancer worldwide with a need for new therapeutic approaches. A dysregulation in the equilibrium between pro- and anti-inflammatory responses with a predominant immunosuppressive inflammatory reaction in advanced stage tumors seem to contribute to tumor growth and metastasis. The current therapies do not include strategies against pro-tumorigenic inflammation in cancer patients.
View Article and Find Full Text PDFPlatelet-derived growth factor (PDGF) signaling, besides other growth factor-mediated signaling pathways like vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), seems to play a crucial role in tumor development and progression. We have recently provided evidence for upregulation of PDGF expression in UICC stage I-IV primary colorectal cancer (CRC) and demonstrated PDGF-mediated induction of PI3K/Akt/mTOR signaling in CRC cell lines. The present study sought to follow up on our previous findings and explore the alternative receptor cross-binding potential of PDGF in CRC.
View Article and Find Full Text PDFRegulatory T cells are an important component of an immune response shaping the overall behavior to potential antigens including alloantigens. Multiple mechanisms have been shown to contribute towards developing and sustaining a immunological regulatory response. One of the described contact dependent suppressive mechanisms regulatory cells have been shown to utilize is through the production of adenosine from extracellular ATP mediated by CD39 and CD73.
View Article and Find Full Text PDF