Publications by authors named "A M Vanderplow"

Article Synopsis
  • Rett syndrome (RTT) is caused by mutations in the MECP2 gene, and while traditional gene therapies face challenges due to toxicity risks, restoring MECP2 levels shows promise in mouse models.
  • The study focuses on site-blocking antisense oligonucleotides (sbASOs) that can prevent repressive miRNA binding to the MECP2 3'UTR, potentially increasing protein levels in patients with RTT.
  • Results show that sbASOs can safely upregulate MECP2 levels in various cell lines and mice, suggesting they could be a viable treatment option for disorders related to MECP2 deficiencies.
View Article and Find Full Text PDF

Based on recent genome-wide association studies, it is theorized that altered regulation of autophagy contributes to the pathophysiology of schizophrenia and bipolar disorder. As activity of autophagy-regulatory pathways is controlled by discrete phosphorylation sites on the relevant proteins, phospho-protein profiling is one of the few approaches available for enabling a quantitative assessment of autophagic activity in the brain. Despite this, a comprehensive phospho-protein assessment in the brains of schizophrenia and bipolar disorder subjects is currently lacking.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a neurodevelopmental disorder that is caused by loss-of-function mutations in the ( ) gene. RTT patients experience a myriad of debilitating symptoms, which include respiratory phenotypes that are often associated with lethality. Our previous work established that expression of the M muscarinic acetylcholine receptor (mAchR) is decreased in RTT autopsy samples, and that potentiation of the M receptor improves apneas in a mouse model of RTT; however, the population of neurons driving this rescue is unclear.

View Article and Find Full Text PDF

The effects of repeated stress on cognitive impairment are thought to be mediated, at least in part, by reductions in the stability of dendritic spines in brain regions critical for proper learning and memory, including the hippocampus. Small GTPases are particularly potent regulators of dendritic spine formation, stability, and morphology in hippocampal neurons. Through the use of small GTPase protein profiling in mice, we identify increased levels of synaptic Rap1 in the hippocampal CA3 region in response to escalating, intermittent stress.

View Article and Find Full Text PDF

The effects of repeated stress on cognitive impairment are thought to be mediated, at least in part, by reductions in the stability of dendritic spines in brain regions critical for proper learning and memory, including the hippocampus. Small GTPases are particularly potent regulators of dendritic spine formation, stability, and morphology in hippocampal neurons. Through the use of small GTPase protein profiling in mice, we identify increased levels of synaptic Rap1 in the hippocampal CA3 region in response to escalating, intermittent stress.

View Article and Find Full Text PDF