The excessive activation of frog eggs, referred to as overactivation, can be initiated by strong oxidative stress, leading to expedited calcium-dependent non-apoptotic cell death. Overactivation also occurs spontaneously, albeit at a low frequency, in natural populations of spawned frog eggs. Currently, the cytological and biochemical events of the spontaneous process have not been characterized.
View Article and Find Full Text PDFExcessive activation of frog eggs (overactivation) is a pathological process that renders eggs unfertilizable. Its physiological inducers are unknown. Previously, oxidative stress was shown to cause time- and dose-dependent overactivation of frog eggs.
View Article and Find Full Text PDFThe protein isoelectric point (pI) can be calculated from an amino acid sequence using computational analysis in a good agreement with experimental data. Availability of whole-genome sequences empowers comparative studies of proteome-wide pI distributions. It was found that the whole-proteome distributions of protein pI values are multimodal in different species.
View Article and Find Full Text PDFAging of oocytes and eggs diminishes their reproductive and developmental potential. It has been demonstrated previously that reactive oxygen species (ROS) contribute to accelerated aging of various cells. In the present study, we measured intracellular levels of ROS and investigated effects of several selective antioxidants (AOXs) on the viability and functional activity of aging oocytes and eggs of the African clawed frog .
View Article and Find Full Text PDF