Purpose: Rare diseases are individually uncommon yet collectively prevalent. They affect over 300,000 people in Ireland, with 50-70 % impacting children. This study explores the supportive care needs of parents caring for children with rare diseases in Ireland, utilising a validated Parental Needs Scale for Rare Diseases (PNS-RD).
View Article and Find Full Text PDFDepth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images.
View Article and Find Full Text PDFMolecular fluorescence-guided surgery has shown promise for tumor margin delineation but is limited by its depth profiling capability. Interestingly, most fluorophores, either clinically approved or in clinical trials, can also be used as photoacoustic contrast agents, yet their use is limited due to the low light fluence permitted for clinical use and the limited sensitivity of current photoacoustic imaging systems. There is therefore an urgent unmet need to establish methods for enhancing contrast in molecular targeted PA imaging which could potentially complement and overcome limitations in molecular fluorescence guided therapies.
View Article and Find Full Text PDFUnderstanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions.
View Article and Find Full Text PDF