Publications by authors named "A M Sprinkart"

Background Large-scale secondary use of clinical databases requires automated tools for retrospective extraction of structured content from free-text radiology reports. Purpose To share data and insights on the application of privacy-preserving open-weights large language models (LLMs) for reporting content extraction with comparison to standard rule-based systems and the closed-weights LLMs from OpenAI. Materials and Methods In this retrospective exploratory study conducted between May 2024 and September 2024, zero-shot prompting of 17 open-weights LLMs was preformed.

View Article and Find Full Text PDF

Automated tools for quantification of idiopathic pulmonary fibrosis (IPF) can aid in ensuring reproducibility, however their complexity and costs can differ substantially. In this retrospective study, two automated tools were compared in 45 patients with biopsy proven (12/45) and imaging-based (33/45) IPF diagnosis (mean age 74 ± 9 years, 37 male) for quantification of pulmonary fibrosis in CT. First, a tool that identifies multiple characteristic lung texture features was applied to measure multi-texture fibrotic lung (MTFL) by combining the amount of ground glass, reticulation, and honeycombing.

View Article and Find Full Text PDF

Objectives: Recently, epicardial adipose tissue (EAT) assessed by CT was identified as an independent mortality predictor in patients with various cardiac diseases. Our goal was to develop a deep learning pipeline for robust automatic EAT assessment in CT.

Methods: Contrast-enhanced ECG-gated cardiac and thoraco-abdominal spiral CT imaging from 1502 patients undergoing transcatheter aortic valve replacement (TAVR) was included.

View Article and Find Full Text PDF

Objectives: To implement and evaluate a super-fast and high-quality biparametric MRI (bpMRI) protocol for prostate imaging acquired at a new ultra-high gradient 3.0-T MRI system.

Methods: Participants with clinically suspected prostate cancer prospectively underwent a multiparametric MRI (mpMRI) on a new 3.

View Article and Find Full Text PDF

Background: The acquisition of contrast-enhanced T1 maps to calculate extracellular volume (ECV) requires contrast agent administration and is time consuming. This study investigates generative adversarial networks for contrast-free, virtual extracellular volume (vECV) by generating virtual contrast-enhanced T1 maps.

Methods And Results: This retrospective study includes 2518 registered native and contrast-enhanced T1 maps from 1000 patients who underwent cardiovascular magnetic resonance at 1.

View Article and Find Full Text PDF