Reward induces activity-dependant gene expression and synaptic plasticity-related changes. Lysine-specific histone demethylase 1 (LSD1), a key enzyme driving histone modifications, regulates transcription in neural circuits of memory and emotional behavior. Herein, we focus on the role of LSD1 in modulating the expression of brain derived neurotrophic factor (BDNF), the master regulator of synaptic plasticity, in the lateral hypothalamus-medial forebrain bundle (LH-MFB) circuit during positive reinforcement.
View Article and Find Full Text PDFReward deficit, expressed as anhedonia, is one of the major symptoms associated with neuropsychiatric disorders, but the underlying maladaptations have not been understood. Herein, we test the hypothesis that the neuropeptide cocaine- and amphetamine-regulated transcript (CART) may participate in the process. The study is justified since the peptide is a major player in inducing satiety and also processing of reward.
View Article and Find Full Text PDFAlthough the role of cocaine- and amphetamine-regulated transcript peptide (CART) in modulating the mesolimbic reward pathway has been suggested, underlying cellular mechanisms have not been elucidated. Herein, we investigate the involvement of G dependent protein kinase A (PKA)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) signaling in CART induced reward behavior. The rat was implanted with a stimulating electrode targeted at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) and conditioned to intracranial self-stimulation (ICSS) in an operant chamber.
View Article and Find Full Text PDFParaventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used.
View Article and Find Full Text PDFRats with electrode implanted in the lateral hypothalamus (LH)-medial forebrain bundle (MFB) area actively engage in intracranial self-stimulation (ICSS). However, the neuronal substrate that translates the electrical pulses into the neural signals, and integrates the information with mesolimbic reward system, has remained elusive. We test the hypothesis that the cocaine- and amphetamine-regulated transcript (CART) neurons in the LH-MFB area may support this function.
View Article and Find Full Text PDF