The Greenland ice sheet has been one of the largest sources of sea-level rise since the early 2000s. However, basal melt has not been included explicitly in assessments of ice-sheet mass loss so far. Here, we present the first estimate of the total and regional basal melt produced by the ice sheet and the recent change in basal melt through time.
View Article and Find Full Text PDFThis paper presents an experimental study investigating the corrosion damage of carbon-steel fibre reinforced concrete (SFRC) exposed to wet-dry cycles of chlorides and carbon dioxide for two years, and its effects on the mechanical performance of the composite over time. The results presented showed a moderate corrosion damage at fibres crossing cracks, within an approximate depth of up to 40 mm inside the crack after two-years of exposure, for the most aggressive exposure conditions investigated. Corrosion damage did not entail a significant detriment to the mechanical performance of the cracked SFRC over the time-scales investigated.
View Article and Find Full Text PDFGeophys Res Lett
March 2020
We use remotely sensed ice velocities in combination with observations of surface elevation and glacier area change to investigate the dynamics of Hagen Bræ, North Greenland in high detail over the last 35 years. From our data, we can establish for the first time that Hagen Bræ is a surge-type glacier with characteristics of both Alaskan- and Svalbard-type surging glaciers. We argue that the observed surge was preconditioned by the glacier geometry and triggered by englacially stored meltwater.
View Article and Find Full Text PDF