Prep Biochem Biotechnol
October 2024
is a widespread medicinal plant with a sufficiently well-studied chemical composition. Secondary metabolites synthesized by plants have pharmacological value for treating numerous diseases, and various types of aseptic in vitro cultures can be used as a source of these compounds. From this perspective, hairy roots attract considerable attention for the production of bioactive chemicals, including flavonoids with antioxidant activity.
View Article and Find Full Text PDFThe "green" synthesis of magnetite and cobalt ferrite nanoparticles (FeO-NPs and CoFeO-NPs) using extracts of L "hairy" roots was proposed. In particular, the effect and role of important variables in the 'green' synthesis process, including the metal-salt ratio, various counter ions in the reaction mixture, concentration of total flavonoids and reducing power of the extract, were evaluated. The morphology and size distribution of the magnetic nanoparticles (MNPs) depended on the metal oxidation state and ratio of Fe(iii) : Fe(ii) in the initial reaction mixture.
View Article and Find Full Text PDFThe aim of the study was to evaluate the long-term effect of Agrobacterium rhizogenes genes transfer on plant antioxidant system by the study of superoxide dismutase (SOD) activity in "hairy" roots of Artemisia and Althaea spp plants. PCR analyses revealed stability of the transformation and presence of bacterial rol B and rol C genes in the "hairy" roots after 4-6 years from the transformation event. SOD activity in the roots of untransformed in vitro cultivated plants used for the initiation of "hairy" roots growth was in the range of 45.
View Article and Find Full Text PDFThe research was focused on the synthesis of silver nanoparticles (AgNPs) using extracts from the "hairy" root cultures of Ledeb. and L. The effect of operational parameters such as type of solvent, temperature of extraction, flavonoids concentration, and reducing power of the wormwood "hairy" root extracts on the particle size and yield of the resultant nanoparticles is reported for the first time.
View Article and Find Full Text PDFPlants belonging to the genus Artemisia L. have been used for medicinal purposes since ancient times. These aromatic plants produce and accumulate a wide range of potent secondary metabolites, many of which have shown antioxidant, antiparasitic, antimicrobial, anti-inflammatory, and even anticancer activities.
View Article and Find Full Text PDF