Publications by authors named "A M Schreihofer"

Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory.

View Article and Find Full Text PDF

Obese Zucker rats (OZRs) develop hypertension and hyperinsulinemia by 3 mo of age. Male OZRs also have diminished baroreflex-mediated activation of nucleus tractus solitarius (NTS) and bradycardia, which are improved by correcting their hyperglycemia. Conversely, 3-mo-old female OZRs and lean Zucker rats (LZRs) have equivalent baroreflex-mediated bradycardia that is impaired in 6-mo-old OZRs.

View Article and Find Full Text PDF

Young adult male obese Zucker rats (OZR) develop insulin resistance and hypertension with impaired baroreflex-mediated bradycardia and activation of nucleus tractus solitarius (NTS). Because type 1 diabetic rats also develop impaired baroreflex-mediated NTS activation, we hypothesized that improving glycemic control in OZR would enhance compromised baroreflexes and NTS activation. Fasting blood glucose measured by telemetry was comparable in OZR and lean Zucker rats (LZR) at 12-17 wk.

View Article and Find Full Text PDF

Obesity leads to altered autonomic reflexes that reduce stability of mean arterial pressure (MAP). Sympathoinhibitory reflexes such as baroreflexes are impaired, but reflexes that raise MAP appear to be augmented. In obese Zucker rats (OZR) sciatic nerve stimulation evokes larger increases in MAP by unknown mechanisms.

View Article and Find Full Text PDF

Adult obese Zucker rats (OZR; >12 wk) develop elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) with impaired baroreflexes compared with adult lean Zucker rats (LZR) and juvenile OZR (6-7 wk). In adult OZR, baroreceptor afferent nerves respond normally to changes in MAP, whereas electrical stimulation of baroreceptor afferent fibers produces smaller reductions in SNA and MAP compared with LZR. We hypothesized that impaired baroreflexes in OZR are linked to reduced activation of brain stem sites that mediate baroreflexes.

View Article and Find Full Text PDF