Publications by authors named "A M Rucklidge"

There is a pressing need to better understand how microbial populations respond to antimicrobial drugs, and to find mechanisms to possibly eradicate antimicrobial-resistant cells. The inactivation of antimicrobials by resistant microbes can often be viewed as a cooperative behaviour leading to the coexistence of resistant and sensitive cells in large populations and static environments. This picture is, however, greatly altered by the fluctuations arising in volatile environments, in which microbial communities commonly evolve.

View Article and Find Full Text PDF

Quasicrystals (materials with long-range order but without the usual spatial periodicity of crystals) were discovered in several soft matter systems in the last 20 years. The stability of quasicrystals has been attributed to the presence of two prominent length scales in a specific ratio, which is 1.93 for the 12-fold quasicrystals most commonly found in soft matter.

View Article and Find Full Text PDF

Aperiodic (quasicrystalline) tilings, such as Penrose's tiling, can be built up from, e.g., kites and darts, squares and equilateral triangles, rhombi- or shield-shaped tiles, and can have a variety of different symmetries.

View Article and Find Full Text PDF

We consider a dynamic network of individuals that may hold one of two different opinions in a two-party society. As a dynamical model, agents can endlessly create and delete links to satisfy a preferred degree, and the network is shaped by homophily, a form of social interaction. Characterized by the parameter J∈[-1,1], the latter plays a role similar to Ising spins: agents create links to others of the same opinion with probability (1+J)/2 and delete them with probability (1-J)/2.

View Article and Find Full Text PDF

The density distribution in solids is often represented as a sum of Gaussian peaks (or similar functions) centered on lattice sites or via a Fourier sum. Here, we argue that representing instead the logarithm of the density distribution via a Fourier sum is better. We show that truncating such a representation after only a few terms can be highly accurate for soft matter crystals.

View Article and Find Full Text PDF