Additive friction stir deposition (AFSD) is an emerging solid-state additive manufacturing process with a high deposition rate. Being a non-fusion additive manufacturing (AM) process, it significantly eliminates problems related to melting such as cracking or high residual stresses. Therefore, it is possible to process reactive materials or high-strength alloys with high susceptibility to cracking.
View Article and Find Full Text PDFInteractions of graphene oxide (GO) with an rat heart and its coronary vessels have not been studied yet. Moreover, the conflicting data on the "structure-properties" relationships do not allow for biomedical applications of GO. Herein, we study the impact of GO on the isolated rat heart, normotensive and hypertensive, under the working heart and the constant-pressure perfusion (Langendorff) regimes.
View Article and Find Full Text PDFAdditive manufacturing has revolutionised the production of functional components and assemblies, offering a high degree of manufacturing flexibility. This review explores the latest advancements in additive manufacturing, focusing on its fusion-based and solid-state based technologies, and highlights the use of recycled aluminium as feedstock in these processes. The advantages and limitations of incorporating recycled materials are thoroughly analysed, considering factors such as material properties, sustainability, and process acceptance.
View Article and Find Full Text PDFUnlabelled: Graphene oxide's (GO) intravascular applications and biocompatibility are not fully explored yet, although it has been proposed as an anticancer drug transporter, antibacterial factor or component of wearable devices. Bivalent cations and the number of particles' atom layers, as well as their structural oxygen content and pH of the dispersion, all affect the GO size, shape, dispersibility and biological effects. Bovine serum albumin (BSA), an important blood plasma protein, is expected to improve GO dispersion stability in physiological concentrations of the precipitating calcium and magnesium cations to enable effective and safe tissue perfusion.
View Article and Find Full Text PDFManufacturing and maintenance procedures in the railway industry regularly implement welding and metal deposition operations to produce joints, coatings and repair structures. During these processes, residual stresses arise through the generation of heat affected zones and plastic deformation. This makes accurate measurements of the internal stresses a critical aspect of manufacturing, monitoring, repair and model validation in the develop new metallic coating and joining technologies.
View Article and Find Full Text PDF