Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites.
View Article and Find Full Text PDFInterruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2) and ob/ob mice treated with a specific inhibitor of Slc10a2.
View Article and Find Full Text PDFObjective: Bile acids are derived from cholesterol and are potent physiological laxatives. The aim of this study was to investigate whether bile acid synthesis is altered in constipation.
Material And Methods: Female patients with constipation (23 IBS-C, 4 functional constipation (FC)) were studied and compared with non-constipated subjects (16 IBS-D, 20 healthy women).
Reduction of plasma cholesterol by statins is fundamental to prevent coronary heart disease. Such therapy is often sub-optimal, however, particularly in patients with reduced LDL receptors (familial hypercholesterolemia), and novel or adjuvant therapies are therefore warranted. Cholesterol elimination is profoundly influenced by the rate of its conversion to bile acids (BA), regulated by the enzyme Cyp7a1.
View Article and Find Full Text PDFDrug intervention that prevents reabsorption of circulating bile acids by the apical (ileal) sodium/bile acid cotransporter (ASBT) may be a promising new therapy for lowering of plasma cholesterol. 2164U90 is a benzothiazepine-based competitive inhibitor of bile acid transport with K(i) values of approximately 10 and 0.068 microM for the homologous human and mouse apical transporters, respectively.
View Article and Find Full Text PDF