Publications by authors named "A M Muro-Pastor"

RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far.

View Article and Find Full Text PDF

Glutamine synthetase (GS) is a key enzyme involved in nitrogen assimilation and the maintenance of C/N balance, and it is strictly regulated in all bacteria. In cyanobacteria, GS expression is controlled by nitrogen control A (NtcA) transcription factor, which operates global nitrogen regulation in these photosynthetic organisms. Furthermore, posttranslational regulation of GS is operated by protein-protein interaction with GS inactivating factors (IFs).

View Article and Find Full Text PDF

Transcriptomic analyses using high-throughput methods have revealed abundant antisense transcription in bacteria. Antisense transcription is often due to the overlap of mRNAs with long 5' or 3' regions that extend beyond the coding sequence. In addition, antisense RNAs that do not contain any coding sequence are also observed.

View Article and Find Full Text PDF

Heterocysts are specialized cells that filamentous cyanobacteria differentiate for the fixation of atmospheric nitrogen when other nitrogen sources are not available. Heterocyst differentiation at semiregular intervals along the filaments requires complex structural and metabolic changes that are under the control of the master transcriptional regulator HetR. NsiR1 (itrogen tress-nduced NA ) is a HetR-dependent noncoding RNA that is expressed from multiple chromosomal copies, some identical, some slightly divergent in sequence, specifically in heterocysts from very early stages of differentiation.

View Article and Find Full Text PDF

Biological processes in all living cells are powered by ATP, a nearly universal molecule of energy transfer. ATP synthases produce ATP utilizing proton gradients that are usually generated by either respiration or photosynthesis. However, cyanobacteria are unique in combining photosynthetic and respiratory electron transport chains in the same membrane system, the thylakoids.

View Article and Find Full Text PDF