Publications by authors named "A M Matarese"

Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions.

View Article and Find Full Text PDF

The utilization rates of laparoscopic gastric banding (LAGB) declined worldwide from 42.3% in 2008 to 1.8% in 2018.

View Article and Find Full Text PDF

The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity.

View Article and Find Full Text PDF

MicroRNAs (miRs) are small non-coding RNAs that modulate the expression of several target genes. Fibroblast growth factor binding protein 1 (FGFBP1) has been associated with endothelial dysfunction at the level of the blood-brain barrier (BBB). However, the underlying mechanisms are mostly unknown and there are no studies investigating the relationship between miRs and FGFBP1.

View Article and Find Full Text PDF

Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome.

View Article and Find Full Text PDF