Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B).
View Article and Find Full Text PDFBackground: The advent of checkpoint therapy is one of the most important recent advancements in cancer therapy. Though checkpoint therapy is a mainstay in some cancers, it has been largely ineffective in treating cancers of the pancreas. Pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors are seldom responsive to checkpoint inhibition.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) tumors are deficient in glutamine, an amino acid that tumor cells and CAFs use to sustain their fitness. In PDAC, both cell types stimulate macropinocytosis as an adaptive response to glutamine depletion. CAFs play a critical role in sculpting the tumor microenvironment, yet how adaptations to metabolic stress impact the stromal architecture remains elusive.
View Article and Find Full Text PDFMol Cancer Ther
November 2024
Improvement of outcome in patients with pancreatic ductal adenocarcinoma (PDAC) requires exploration of novel therapeutic targets. Thus far, most studies of PDAC therapies, including those inhibiting small ubiquitin-like modifications (SUMOylation), have focused on PDAC epithelial cell biology, yet SUMOylation occurs in a variety of cell types. The mechanisms by which SUMOylation impacts PDAC in the context of its tumor microenvironment are poorly understood.
View Article and Find Full Text PDF