Publications by authors named "A M Lipatov"

Bacterial adhesion and biofilm maturation is significantly influenced by surface properties, encompassing both bare surfaces and single or multi-layered coatings. Hence, there is an utmost interest in exploring the intricacies of gene regulation in sulfate-reducing bacteria (SRB) on copper and graphene-coated copper surfaces. In this study, G20 was used as the model SRB to elucidate the pathways that govern pivotal roles during biofilm formation on the graphene layers.

View Article and Find Full Text PDF

MXenes are a large family of two-dimensional materials with a general formula MXT, where M is a transition metal, X = C and/or N, and T represents surface functional groups. MXenes are synthesized by etching A-elements from layered MAX phases with a composition of MAX. As over 20 different chemical elements were shown to form A-layers in various MAX phases, we propose that they can provide an abundant source of very diverse MXene-based materials.

View Article and Find Full Text PDF

The presence of in-plane chiral effects, hence spin-orbit coupling, is evident in the changes in the photocurrent produced in a TiS(001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin-orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiSis n-type and has an electron mobility in the range of 1-6 cmVs.

View Article and Find Full Text PDF

The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors.

View Article and Find Full Text PDF

X-ray photoemission spectroscopy (XPS) has been used to examine the interaction between Au and HfS at the Au/HfS interface. XPS measurements reveal dissociative chemisorption of O, leading to the formation of an oxide of Hf at the surface of HfS. This surface hafnium oxide, along with the weakly chemisorbed molecular species, such as O and HO, are likely responsible for the observed p-type characteristics of HfS reported elsewhere.

View Article and Find Full Text PDF