Publications by authors named "A M Lindenberg"

A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.

View Article and Find Full Text PDF

The unique layer-stacking in two-dimensional (2D) van der Waals materials facilitates the formation of nearly degenerate phases of matter and opens novel routes for the design of low-power, reconfigurable functional materials. Electrochemical ion intercalation between stacked layers offers a promising approach to stabilize bulk metastable phases and to explore the effects of extreme carrier doping and strain. However, in situ characterization methods to study the structural evolution and dynamical functional properties of these intercalated materials remains limited.

View Article and Find Full Text PDF

Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, reversible symmetry changes are unveiled in colloidal lead chalcogenide quantum dots on picosecond timescales.

View Article and Find Full Text PDF
Article Synopsis
  • Strong coupling between polarization and strain in ferroelectric complex oxides allows for significant tuning of their properties, particularly demonstrated in KNbO thin films.
  • Applying biaxial strain can drastically increase the Curie temperature, with predictions indicating it could exceed 1325 K under certain conditions.
  • Enhanced properties such as a 46% increase in remanent polarization and a 200% boost in optical second harmonic generation coefficients make lead-free KNbO a promising candidate for high-temperature ferroelectric memory and quantum computing applications.
View Article and Find Full Text PDF