Publications by authors named "A M Leeuwenberg"

Objectives: To give an overview of methods for updating artificial intelligence (AI)-based clinical prediction models based on new data.

Study Design And Setting: We comprehensively searched Scopus and Embase up to August 2022 for articles that addressed developments, descriptions, or evaluations of prediction model updating methods. We specifically focused on articles in the medical domain involving AI-based prediction models that were updated based on new data, excluding regression-based updating methods as these have been extensively discussed elsewhere.

View Article and Find Full Text PDF

Importance: The aging and multimorbid population and health personnel shortages pose a substantial burden on primary health care. While predictive machine learning (ML) algorithms have the potential to address these challenges, concerns include transparency and insufficient reporting of model validation and effectiveness of the implementation in the clinical workflow.

Objectives: To systematically identify predictive ML algorithms implemented in primary care from peer-reviewed literature and US Food and Drug Administration (FDA) and Conformité Européene (CE) registration databases and to ascertain the public availability of evidence, including peer-reviewed literature, gray literature, and technical reports across the artificial intelligence (AI) life cycle.

View Article and Find Full Text PDF

Background: Across medicine, prognostic models are used to estimate patient risk of certain future health outcomes (e.g., cardiovascular or mortality risk).

View Article and Find Full Text PDF

Objectives: Natural language processing (NLP) of clinical notes in electronic medical records is increasingly used to extract otherwise sparsely available patient characteristics, to assess their association with relevant health outcomes. Manual data curation is resource intensive and NLP methods make these studies more feasible. However, the methodology of using NLP methods reliably in clinical research is understudied.

View Article and Find Full Text PDF

Background: General practitioners (GPs) often assess patients with acute infections. It is challenging for GPs to recognize patients needing immediate hospital referral for sepsis while avoiding unnecessary referrals. This study aimed to predict adverse sepsis-related outcomes from telephone triage information of patients presenting to out-of-hours GP cooperatives.

View Article and Find Full Text PDF