Objective: Sex steroids exert important biological functions within the CNS, but the underlying mechanisms are poorly understood. The contribution of circulating sex steroids to the levels in CNS tissue and cerebrospinal fluid (CSF) has been sparsely investigated in human and with inconclusive results. This could partly be due to lack of sensitive validated assays.
View Article and Find Full Text PDFBackground: New therapeutics in development for bladder cancer need to address the recalcitrant nature of the disease. Intravesical adoptive cell therapy (ACT) with tumor infiltrating lymphocytes (TIL) can potentially induce durable responses in bladder cancer while maximizing T cells at the tumor site. T cells infused into the bladder directly encounter immunosuppressive populations, such as myeloid derived suppressor cells (MDSCs), that can attenuate T cell responses.
View Article and Find Full Text PDFProgesterone serum levels have been identified as a potential predictor for treatment effect in men with advanced prostate cancer, which is an androgen-driven disease. Although progesterone is the most abundant sex steroid in orchiectomized (ORX) male mice, the origins of progesterone in males are unclear. To determine the origins of progesterone and androgens, we first determined the effect of ORX, adrenalectomy (ADX), or both (ORX + ADX) on progesterone levels in multiple male mouse tissues.
View Article and Find Full Text PDFHigher γδ T cell counts in patients with malignancies are associated with better survival. However, γδ T cells are rare in the blood and functionally impaired in patients with malignancies. Promising results are reported on the treatment of various malignancies with in vivo expansion of autologous γδ T cells using zoledronic acid (zol) and interleukin-2 (IL-2).
View Article and Find Full Text PDF