Publications by authors named "A M Kolchinsky"

Maximizing the amount of work harvested from an environment is important for a wide variety of biological and technological processes, from energy-harvesting processes such as photosynthesis to energy storage systems such as fuels and batteries. Here, we consider the maximization of free energy-and by extension, the maximum extractable work-that can be gained by a classical or quantum system that undergoes driving by its environment. We consider how the free energy gain depends on the initial state of the system while also accounting for the cost of preparing the system.

View Article and Find Full Text PDF

It has been argued that the historical nature of evolution makes it a highly path-dependent process. Under this view, the outcome of evolutionary dynamics could have resulted in organisms with different forms and functions. At the same time, there is ample evidence that convergence and constraints strongly limit the domain of the potential design principles that evolution can achieve.

View Article and Find Full Text PDF

In a well-known paper, Jeremy England derived a bound on the free energy dissipated by a self-replicating system [J. L. England, "Statistical physics of self-replication," J.

View Article and Find Full Text PDF

The partial information decomposition (PID) aims to quantify the amount of redundant information that a set of sources provides about a target. Here, we show that this goal can be formulated as a type of information bottleneck (IB) problem, termed the "redundancy bottleneck" (RB). The RB formalizes a tradeoff between prediction and compression: it extracts information from the sources that best predict the target, without revealing which source provided the information.

View Article and Find Full Text PDF

We consider the minimal thermodynamic cost of an individual computation, where a single input x is mapped to a single output y. In prior work, Zurek proposed that this cost was given by K(x|y), the conditional Kolmogorov complexity of x given y (up to an additive constant that does not depend on x or y). However, this result was derived from an informal argument, applied only to deterministic computations, and had an arbitrary dependence on the choice of protocol (via the additive constant).

View Article and Find Full Text PDF