Publications by authors named "A M Hiszpanski"

Efficiently extracting data from tables in the scientific literature is pivotal for building large-scale databases. However, the tables reported in materials science papers exist in highly diverse forms; thus, rule-based extractions are an ineffective approach. To overcome this challenge, the study presents MaTableGPT, which is a GPT-based table data extractor from the materials science literature.

View Article and Find Full Text PDF

Crystal structure prediction (CSP) is performed for the energetic materials (EMs) LLM-105 and α-RDX, as well as the α and β conformational polymorphs of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), using the genetic algorithm (GA) code, GAtor, and its associated random structure generator, Genarris. Genarris and GAtor successfully generate the experimental structures of all targets. GAtor's symmetric crossover scheme, where the space group symmetries of parent structures are treated as genes inherited by offspring, is found to be particularly effective.

View Article and Find Full Text PDF

Accurately predicting new polymers' properties with machine learning models apriori to synthesis has potential to significantly accelerate new polymers' discovery and development. However, accurately and efficiently capturing polymers' complex, periodic structures in machine learning models remains a grand challenge for the polymer cheminformatics community. Specifically, there has yet to be an ideal solution for the problems of how to capture the periodicity of polymers, as well as how to optimally develop polymer descriptors without requiring human-based feature design.

View Article and Find Full Text PDF

The materials science community has been increasingly interested in harnessing the power of deep learning to solve various domain challenges. However, despite their effectiveness in building highly predictive models, e.g.

View Article and Find Full Text PDF

To expedite new molecular compound development, a long-sought goal within the chemistry community has been to predict molecules' bulk properties of interest a priori to synthesis from a chemical structure alone. In this work, we demonstrate that machine learning methods can indeed be used to directly learn the relationship between chemical structures and bulk crystalline properties of molecules, even in the absence of any crystal structure information or quantum mechanical calculations. We focus specifically on a class of organic compounds categorized as energetic materials called high explosives (HE) and predicting their crystalline density.

View Article and Find Full Text PDF