Publications by authors named "A M Henni"

This work reports the electrochemical fabrication of thin films comprising polyaniline nanofibers (PANI) in conjunction with graphene oxide (GO) and reduced graphene oxide (rGO) on ITO substrate, along with examining the electrochemical properties, with a focus on the influence of the substrate and electrolyte in the electrodeposition methods. The study explores the electrochemical characteristics of these thin films and establishes a flexible framework for their application in diverse sectors such as sensors, supercapacitors, and electronic devices. It analyzes the impact of the substrate and electrolyte in electrodeposition techniques.

View Article and Find Full Text PDF

This comprehensive study looks at how operational conditions affect the performance of a novel seven-channel titania ceramic ultrafiltration membrane for the treatment of produced water. A full factorial design experiment (2) was conducted to study the effect of the cross-flow operating factors on the membrane permeate flux decline and the overall permeate volume. Eleven experimental runs were performed for three important process operating variables: transmembrane pressure (TMP), crossflow velocity (CFV), and filtration time (FT).

View Article and Find Full Text PDF

This work focused on the solubility of ethane in three promising ionic liquids {1-Hexyl-3-methylimidazolium bis(trifluormethylsulfonyl) imide [HMIM][Tf2N], 1-Butyl-3-methyl-imidazolium dimethyl-phosphate [BMIM][DMP], and 1-Propyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)-imide [PMIM][Tf2N]}. The solubilities were measured at 303.15 K to 343.

View Article and Find Full Text PDF

This study delves into the necessity of mitigating carbon dioxide (CO) emissions, focusing on effective capture methods to combat global warming by investigating the solubility of CO in three ionic liquids (ILs), 1-Decyl-3-MethylimidazoliumBis (Trifluromethylsulfonyl Imide) [IL1], 1-Hexadecyl-3-Methyl imidazoliumBis (Trifluromethylsulfonyl Imide) [IL2] and Triethytetradecyl Ammonium Bis (Trifluromethylsulfonyl Imide) [IL3]. Solubility experiments were conducted at (30, 50 and 70) °C with pressures up to 1.5 MPa.

View Article and Find Full Text PDF

The cellulose is the most abundant and renewable polymer in nature. It is characterized by its biodegradability that can help to establish a friendly environment. The main objective of this study is intended to characterize the nanocellulose obtained from waste date palm,  including the dried palms (DP) and the fresh palms (FP) by implementing chemical methods (hydrolysis with H2SO4).

View Article and Find Full Text PDF