Crit Rev Clin Lab Sci
January 2025
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins.
View Article and Find Full Text PDFIntroduction: Chronic immune activation is a hallmark of human immunodeficiency virus (HIV) infection that significantly impacts disease pathogenesis. However, in-depth studies characterizing the immunological landscape of the ectocervix during chronic HIV infection remain scarce despite the importance of this tissue site for HIV transmission.
Methods: Ectocervical tissue samples were obtained from antiretroviral-naïve HIV-seropositive and -seronegative Kenyan female sex workers.
Larvae of (the greater wax moth) are being increasingly used as a model to study microbial pathogenesis. In this model, bacterial virulence is typically measured by determining the 50% lethal dose (LD) of a bacterial strain or mutant. The use of to study pathogenesis, however, is challenging because of the extreme sensitivity of larvae to this bacterium.
View Article and Find Full Text PDFBackground And Objectives: Inflammatory demyelinating diseases of the CNS, chief among them multiple sclerosis (MS), are a major cause of disability in young adults. Early manifestations of MS commonly involve visual dysfunction, which is often caused by optic neuritis and is accompanied by quantifiable structural changes of the anterior visual pathway. Retinal optical coherence tomography (OCT) has emerged as an important tool for clinical assessment of these structural alterations, but the underlying pathobiological mechanisms and temporal dynamics are yet poorly understood at a cellular level.
View Article and Find Full Text PDFTraumatic spinal cord injury (SCI) is a devastating condition for which effective neuroregenerative and neuroreparative strategies are lacking. The post-traumatic disruption of the blood-spinal cord barrier (BSCB) as part of the neurovascular unit (NVU) is one major factor in the complex pathophysiology of SCI, which is associated with edema, inflammation, and cell death in the penumbra regions of the spinal cord adjacent to the lesion epicenter. Thus, the preservation of an intact NVU and vascular integrity to facilitate the regenerative capacity following SCI is a desirable therapeutic target.
View Article and Find Full Text PDF