The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from ∼ 13°-241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere.
View Article and Find Full Text PDFJ Geophys Res Planets
December 2022
Wind speeds measured by the Mars 2020 Perseverance rover in Jezero crater were fitted as a Weibull distribution. InSight wind data acquired in Elysium Planitia were also used to contextualize observations. Jezero winds were found to be much calmer on average than in previous landing sites, despite the intense aeolian activity observed.
View Article and Find Full Text PDFDespite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars' ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover's novel environmental sensors and Jezero crater's dusty environment remedy this. In Perseverance's first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty ("dust devils").
View Article and Find Full Text PDF