The immune microenvironment in breast cancer (BCa) is controlled by a complex network of communication between various cell types. Here, we find that recruitment of B lymphocytes to BCa tissues is controlled via mechanisms associated with cancer cell-derived extracellular vesicles (CCD-EVs). Gene expression profiling identifies the Liver X receptor (LXR)-dependent transcriptional network as a key pathway that controls both CCD-EVs-induced migration of B cells and accumulation of B cells in BCa tissues.
View Article and Find Full Text PDFThe stereocontrolled synthesis of complex spirotricyclic systems containing an embedded -1,2-diaminocyclohexane unit is reported, based upon a dearomatising oxidation of phenols bearing pendant ureas capable of acting as double nucleophiles. This complexity-generating transformation yields products with rich functionality suitable for application in the synthesis of potentially bioactive compounds.
View Article and Find Full Text PDFHerein we report the development of a methodology for the dual-functionalisation of IgG antibodies. This is accomplished through the combination of disulfide rebridging divinylpyrimidine technology, with bicyclononyne and methylcyclopropene handles to facilitate sequential SPAAC and IEDDA reactions. Advantageously, the strategy does not require metal catalysis and avoids the need for purification between functionalisation steps.
View Article and Find Full Text PDFObjectives: Better markers of early response to neoadjuvant chemotherapy (NACT) in patients with breast cancer are required to enable the timely identification of non-responders and reduce unnecessary treatment side-effects. Early functional imaging may better predict response to treatment than conventional measures of tumour size. The purpose of this study was to test the hypothesis that the change in tumour blood flow after one cycle of NACT would predict pathological response.
View Article and Find Full Text PDF