The term sample dependence describes the troublesome tendency of nominally equivalent samples to exhibit different physical properties. High entropy oxides (HEOs) are a class of materials where sample dependence has the potential to be particularly profound due to their inherent chemical complexity. In this work, we prepare a spinel HEO of identical nominal composition by five distinct methods, spanning a range of thermodynamic and kinetic conditions: solid state, high pressure, hydrothermal, molten salt, and combustion syntheses.
View Article and Find Full Text PDFThe field of high entropy oxides (HEOs) flips traditional materials science paradigms on their head by seeking to understand what properties arise in the presence of profound configurational disorder. This disorder, which originates from multiple elements sharing a single lattice site, can take on a kaleidoscopic character due to the vast numbers of possible elemental combinations. High configurational disorder appears to imbue some HEOs with functional properties that far surpass their nondisordered analogs.
View Article and Find Full Text PDFSpinel oxides are an ideal setting to explore the interplay between configurational entropy, site selectivity, and magnetism in high-entropy oxides (HEOs). In this work, we characterize the magnetic properties of the spinel (Cr, Mn, Fe, Co, Ni)O and study the evolution of its magnetism as a function of nonmagnetic gallium substitution. Across the range of compositions studied here, from 0 to 40% Ga, magnetic susceptibility and powder neutron diffraction measurements show that ferrimagnetic order is robust in the spinel HEO.
View Article and Find Full Text PDFThe magnetic ground state of the pyrochlore YbGaSbO has remained an enigma for nearly a decade. The persistent spin fluctuations observed by muon spin relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of YbGaSbO to elucidate the central physics at play.
View Article and Find Full Text PDFWe report a chemical substitution-induced ferromagnetic quantum critical point in polycrystalline Ni_{1-x}Rh_{x} alloys. Through magnetization and muon spin relaxation measurements, we show that the ferromagnetic ordering temperature is suppressed continuously to zero at x_{crit}=0.375 while the magnetic volume fraction remains 100% up to x_{crit}, pointing to a second order transition.
View Article and Find Full Text PDF