This study aimed to develop diagnostic reference levels (DRLs) in Single Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) imaging for the most frequent SPECT/CT and PET/CT examinations performed at our institution. A total of 1134 adult patients, who have undergone SPECT/CT and PET/CT scanning over a period of 4 years (2018-2021), were included. The scans consisted of 401 PET/CT and 733 SPECT/CT scans.
View Article and Find Full Text PDFThe core and surface structure, and magnetism of mechano-synthesized LaFeO nanoparticles (30-40 nm), Eu-doped (LaEuFeO), and Eu/Cr co-doped (LaEuFeCrO) are reported. Doping results in a transition from the O'-type to the O-type distorted structure. Traces of reactants, intermediate phases, and a small amount of Eu ions were detected on the surfaces of the nanoparticles.
View Article and Find Full Text PDFIn this report, the heating efficiencies of γ-FeO and hybrid γ-FeO-TiO nanoparticles NPs under an alternating magnetic field (AMF) have been investigated to evaluate their feasible use in magnetic hyperthermia. The NPs were synthesized by a modified sol-gel method and characterized by different techniques. X-ray diffraction (XRD), Mössbauer spectroscopy and electron microscopy analyses confirmed the maghemite (γ-FeO) phase, crystallinity, good uniformity and 10 nm core sizes of the as-synthesized composites.
View Article and Find Full Text PDFFree and partially encapsulated manganese ferrite (MnFeO) nanoparticles are synthesized and characterized regarding structure, surface, and electronic and magnetic properties. The preparation method of partially encapsulated manganese ferrite enables the formation of a hybrid nanoparticle/tube system, which exhibits properties of manganese ferrite nanoparticles inside and attached to the external surface of the tubes. The effect of having manganese ferrite nanoparticles inside the tubes is observed as a shift in the X-ray diffraction peaks and as an increase in stress, hyperfine field, and coercivity when compared to free manganese ferrite nanoparticles.
View Article and Find Full Text PDF