Publications by authors named "A M Fuentefria"

Ocular fungal infections are pathologies of slow progression, occurring mainly in the cornea, but can also affect the entire structure of the eyeball. The main aetiological agents are species of the genera and . Both diagnosis and treatment require speed and effectiveness.

View Article and Find Full Text PDF

The current global scenario presents us with a growing increase in infections caused by fungi, referred to by specialists in the field as a "silent epidemic", aggravated by the limited pharmacological arsenal and increasing resistance to this therapy. For this reason, drug repositioning and therapeutic compound combinations are promising strategies to mitigate this serious problem. In this context, this study investigates the antifungal activity of the non-toxic, low-cost and widely available cationic polyelectrolyte Poly(diallyldimethylammonium chloride) (PDDA), in combination with different antifungal drugs: systemic (amphotericin B, AMB), topical (clioquinol, CLIO) and oral (nitroxoline, NTX).

View Article and Find Full Text PDF

Natural polymers have recently been investigated for various applications, such as 3D printing and healthcare, including treating infections. Among microbial infections, fungal diseases remain overlooked, with limited therapeutic options and high recurrence. Cutaneous cryptococcosis is an opportunistic fungal infection triggered by mechanical inoculation or hematogenous dissemination of the yeast that causes cryptococcal pneumonia and meningitis.

View Article and Find Full Text PDF

Our study delved into the intricate dynamics of antifungal susceptibility testing for Candida spp., employing a Design of Experiments approach. We systematically investigated the influence of pH, temperature, inoculum size, and glucose concentration on both growth patterns and inhibitory concentrations of Candida spp.

View Article and Find Full Text PDF

Drug biotransformation studies emerges as an alternative to pharmacological investigations of metabolites, development of new drug candidates with reduced investment and most efficient production. The present study aims to evaluate the capacity of biotransformation of rifampicin by the filamentous fungus Aspergillus niger ATCC 9029. After incubation for 312 h, the drug was metabolized to two molecules: an isomer (m/z 455) and the rifampicin quinone (m/z 821).

View Article and Find Full Text PDF