Huanglongbing (HLB), a devastating citrus disease caused by Candidatus Liberibacter asiaticus, is efficiently vectored by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Tamarixia radiata (Waterston) plays a crucial role as an ectoparasitoid, preying on D. citri nymphs.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of , and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to -dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS).
View Article and Find Full Text PDFPurpose: Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs.
View Article and Find Full Text PDFPurpose: PSMA (prostate-specific membrane antigen) is highly expressed on prostate cancer (PrCa) cells and extensively used as a homing target for PrCa treatment. Most prominently, PSMA-targeting conjugate PSMA-617, carrying a DOTA chelator and labeled with therapeutic radionuclides like beta-emitting lutetium-177 or alpha-emitting actinium-225, has shown clinical activity in PrCa patients. We sought to develop PSMA-targeting small molecule (SMOL) conjugates that show high uptake in PSMA-expressing tumors and fast clearance, and can easily be labeled with the alpha emitter thorium-227 (half-life 18.
View Article and Find Full Text PDF