Background: Treatment options for aspergillosis include amphotericin B (AMB) and azole compounds, such as itraconazole (ITZ). However, serious side effects related to these antifungal agents are increasingly evident, and resistance continues to increase. Currently, a new trend in drug discovery to overcome this problem is represented by natural products from plants, or their extracts.
View Article and Find Full Text PDFThere is a growing interest in tissue engineering, in which biomaterials play a pivotal role in promoting bone regeneration. Furthermore, smart functionalization can provide biomaterials with the additional role of preventing orthopedic infections. Due to the growing microbial resistance to antimicrobials used to treat those infections, metal ions, such as silver, thanks to their known wide range of bactericidal properties, are believed to be promising additives in developing antibacterial biomaterials.
View Article and Find Full Text PDFNanofibers can play an important role in developing new kinds of medical applications. Poly(lactic acid) (PLA) and PLA/poly(ethylene oxide) (PEO) antibacterial mats containing silver nanoparticles (AgNPs) were prepared by a simple one-step electrospinning method that allows AgNPs to be synthesized simultaneously with the preparation of the electrospinning solution. The electrospun nanofibers were characterized by scanning electron microscopy, transmission electron microscopy and thermogravimetry, while silver release over time was monitored by inductively coupled plasma/optical emission spectroscopy.
View Article and Find Full Text PDFPolymorphonuclear leukocytes (PMNs) are the most important cell type involved in the early nonspecific host response to bacterial pathogens. has evolved mechanisms to evade immune responses that contribute to its persistence in PMNs, and acquired resistance to several antimicrobials. Additionally, methicillin-resistant (MRSA) is one of the most common causes of acute bacterial skin and skin-structure infections (ABSSSIs).
View Article and Find Full Text PDFcauses a wide spectrum of diseases varying from mild to life threatening, despite antibiotic treatment. Nanoparticle application could facilitate the foreign pathogen fight by increasing the antimicrobial effectiveness and reducing their adverse effects. Here, we designed and produced erythromycin-loaded chitosan nanodroplets (Ery-NDs), both oxygen-free and oxygen-loaded.
View Article and Find Full Text PDF