Publications by authors named "A M Copping"

For marine wave and tidal energy to successfully contribute to global renewable energy goals and climate change mitigation, marine energy projects need to expand beyond small deployments to large-scale arrays. However, with large-scale projects come potential environmental effects not observed at the scales of single devices and small arrays. One of these effects is the risk of displacing marine animals from their preferred habitats or their migration routes, which may increase with the size of arrays and location.

View Article and Find Full Text PDF

Thousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion.

View Article and Find Full Text PDF

Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented.

View Article and Find Full Text PDF

Global expansion of marine renewable energy (MRE) technologies is needed to help address the impacts of climate change, to ensure a sustainable transition from carbon-based energy sources, and to meet national energy security needs using locally-generated electricity. However, the MRE sector has yet to realize its full potential due to the limited scale of device deployments (i.e.

View Article and Find Full Text PDF

There are currently millions of displaced people encamped in low-quality shelters that jeopardise the health of these displaced populations. These shelters, which exhibit poor thermal regulation and air quality, are often inhabited by households for several years. Recently, the internal environment of shelters has been recognised as a determinant of the health of the occupants and the indoor air quality (IAQ) and internal temperatures have been identified as critical factors affecting occupants' health.

View Article and Find Full Text PDF