Publications by authors named "A M Carcaboso"

Purpose: Refractory or recurrent retinoblastoma results from acquired chemoresistance and the management of these eyes often requires surgical removal. Our objective was to develop retinoblastoma models resistant to chemotherapy by exposing cancer cells to repeated chemotherapy mimicking the clinical scenario. These newly resistant cells were used to evaluate potential novel therapies.

View Article and Find Full Text PDF
Article Synopsis
  • Humanized immunodeficient mice are important for studying how transplanted human cells interact with a human immune system, helping to improve immunotherapy development.
  • Current methods for reconstituting the immune system using CD34+ cells or peripheral blood often lead to issues like high rates of graft-versus-host disease and poor immune cell representation.
  • This study found that using cord blood mononuclear cells in a specific mouse model allows for better immune reconstitution with less GvHD, leading to effective anti-cancer responses and a promising approach for cancer immunotherapy.
View Article and Find Full Text PDF

Purpose: Retinoblastoma is the most common intraocular malignancy in children. Although new chemotherapeutic approaches have improved ocular salvage rates, novel therapies are required for patients with refractory intraocular and metastatic disease. Chimeric antigen receptor (CAR) T cells targeting glypican-2 (GPC2) are a potential new therapeutic strategy.

View Article and Find Full Text PDF

Background And Aim: Pediatric high-grade gliomas (pedHGG) comprise a very poor prognosis. Thus, parents of affected children are increasingly resorting to complementary and alternative medicine (CAM), among those Boswellia extracts. However, nothing is known about the therapeutic effectiveness of their active substances, Boswellic acids (BA) in pedHGG.

View Article and Find Full Text PDF

H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity.

View Article and Find Full Text PDF